Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 54
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38674000

Stimulation of the alpha 7 nicotinic acetylcholine receptor (α7nAChR) has shown beneficial effects in several acute inflammatory disease models. This study aims to examine whether treatment with the selective α7nAChR agonist PHA 568487 can dampen inflammation and thereby improve cardiac function after myocardial infarction in mice. The possible anti-inflammatory properties of α7nAChR agonist PHA 568487 were tested in vivo using the air pouch model and in a permanent occlusion model of acute myocardial infarction in mice. Hematologic parameters and cytokine levels were determined. Infarct size and cardiac function were assessed via echocardiography 24 h and one week after the infarction. Treatment with α7nAChR agonist PHA 568487 decreased 12 (CCL27, CXCL5, IL6, CXCL10, CXCL11, CXCL1, CCL2, MIP1a, MIP2, CXCL16, CXCL12 and CCL25) out of 33 cytokines in the air pouch model of acute inflammation. However, α7nAChR agonist PHA 568487 did not alter infarct size, ejection fraction, cardiac output or stroke volume at 24 h or at 7 days after the myocardial infarction compared with control mice. In conclusion, despite promising immunomodulatory effects in the acute inflammatory air pouch model, α7nAChR agonist PHA 568487 did not affect infarct size or cardiac function after a permanent occlusion model of acute myocardial infarction in mice. Consequently, this study does not strengthen the hypothesis that stimulation of the α7nAChR is a future treatment strategy for acute myocardial infarction when reperfusion is lacking. However, whether other agonists of the α7nAChR can have different effects remains to be investigated.


Disease Models, Animal , Inflammation , Myocardial Infarction , alpha7 Nicotinic Acetylcholine Receptor , Animals , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , alpha7 Nicotinic Acetylcholine Receptor/agonists , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Mice , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Male , Cytokines/metabolism , Nicotinic Agonists/pharmacology , Nicotinic Agonists/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Mice, Inbred C57BL , Quinuclidines/pharmacology , Quinuclidines/therapeutic use , Benzylamines/pharmacology , Benzylamines/therapeutic use , Benzylidene Compounds/pharmacology
2.
Antioxidants (Basel) ; 13(2)2024 Feb 07.
Article En | MEDLINE | ID: mdl-38397807

Oxidative stress is the imbalance between the production of reactive oxygen species (ROS) and antioxidants in a cell. In the heart, oxidative stress may deteriorate calcium handling, cause arrhythmia, and enhance maladaptive cardiac remodeling by the induction of hypertrophic and apoptotic signaling pathways. Consequently, dysregulated ROS production and oxidative stress have been implicated in numerous cardiac diseases, including heart failure, cardiac ischemia-reperfusion injury, cardiac hypertrophy, and diabetic cardiomyopathy. Lipid droplets (LDs) are conserved intracellular organelles that enable the safe and stable storage of neutral lipids within the cytosol. LDs are coated with proteins, perilipins (Plins) being one of the most abundant. In this review, we will discuss the interplay between oxidative stress and Plins. Indeed, LDs and Plins are increasingly being recognized for playing a critical role beyond energy metabolism and lipid handling. Numerous reports suggest that an essential purpose of LD biogenesis is to alleviate cellular stress, such as oxidative stress. Given the yet unmet suitability of ROS as targets for the intervention of cardiovascular disease, the endogenous antioxidant capacity of Plins may be beneficial.

3.
Curr Opin Lipidol ; 34(4): 180-188, 2023 08 01.
Article En | MEDLINE | ID: mdl-37431304

PURPOSE OF REVIEW: Sphingolipids are structurally diverse membrane lipids localized in lipid bilayers. Sphingolipids are not only important structural components of cellular membranes, but they are also important regulators of cellular trafficking and signal transduction and are implicated in several diseases. Here, we review the latest insights into sphingolipids and their role in cardiac function and cardiometabolic disease. RECENT FINDINGS: The underlying mechanisms linking sphingolipids to cardiac dysfunction are still not fully clarified. Sphingolipids, and in particular ceramides, have emerged as important players in lipotoxicity, mediating inflammation, impaired insulin signalling and apoptosis. In addition, recent findings highlight the importance of glycosphingolipid homeostasis in cardiomyocyte membranes, where they are required to maintain ß-adrenergic signalling and contractile capacity to preserve normal heart function. Thus, glycosphingolipid homeostasis in cardiac membranes characterizes a novel mechanism linking sphingolipids to cardiac disease. SUMMARY: Modulation of cardiac sphingolipids may represent a promising therapeutic approach. Sustained investigation of the link between sphingolipids and cardiomyocyte function is therefore needed and we hope that this review may inspire researchers to further elucidate the action of these lipids.


Myocytes, Cardiac , Sphingolipids , Humans , Myotoxicity , Ceramides , Membrane Lipids
4.
Cardiovasc Res ; 119(7): 1537-1552, 2023 07 04.
Article En | MEDLINE | ID: mdl-36880401

AIMS: Pro-protein convertase subtilisin-kexin type 9 (PCSK9), which is expressed mainly in the liver and at low levels in the heart, regulates cholesterol levels by directing low-density lipoprotein receptors to degradation. Studies to determine the role of PCSK9 in the heart are complicated by the close link between cardiac function and systemic lipid metabolism. Here, we sought to elucidate the function of PCSK9 specifically in the heart by generating and analysing mice with cardiomyocyte-specific Pcsk9 deficiency (CM-Pcsk9-/- mice) and by silencing Pcsk9 acutely in a cell culture model of adult cardiomyocyte-like cells. METHODS AND RESULTS: Mice with cardiomyocyte-specific deletion of Pcsk9 had reduced contractile capacity, impaired cardiac function, and left ventricular dilatation at 28 weeks of age and died prematurely. Transcriptomic analyses revealed alterations of signalling pathways linked to cardiomyopathy and energy metabolism in hearts from CM-Pcsk9-/- mice vs. wild-type littermates. In agreement, levels of genes and proteins involved in mitochondrial metabolism were reduced in CM-Pcsk9-/- hearts. By using a Seahorse flux analyser, we showed that mitochondrial but not glycolytic function was impaired in cardiomyocytes from CM-Pcsk9-/- mice. We further showed that assembly and activity of electron transport chain (ETC) complexes were altered in isolated mitochondria from CM-Pcsk9-/- mice. Circulating lipid levels were unchanged in CM-Pcsk9-/- mice, but the lipid composition of mitochondrial membranes was altered. In addition, cardiomyocytes from CM-Pcsk9-/- mice had an increased number of mitochondria-endoplasmic reticulum contacts and alterations in the morphology of cristae, the physical location of the ETC complexes. We also showed that acute Pcsk9 silencing in adult cardiomyocyte-like cells reduced the activity of ETC complexes and impaired mitochondrial metabolism. CONCLUSION: PCSK9, despite its low expression in cardiomyocytes, contributes to cardiac metabolic function, and PCSK9 deficiency in cardiomyocytes is linked to cardiomyopathy, impaired heart function, and compromised energy production.


Myocytes, Cardiac , Proprotein Convertase 9 , Animals , Mice , Energy Metabolism , Lipids , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , Subtilisin/metabolism
5.
Life Sci Alliance ; 6(4)2023 04.
Article En | MEDLINE | ID: mdl-36717246

The adult heart develops hypertrophy to reduce ventricular wall stress and maintain cardiac function in response to an increased workload. Although pathological hypertrophy generally progresses to heart failure, physiological hypertrophy may be cardioprotective. Cardiac-specific overexpression of the lipid-droplet protein perilipin 5 (Plin5) promotes cardiac hypertrophy, but it is unclear whether this response is beneficial. We analyzed RNA-sequencing data from human left ventricle and showed that cardiac PLIN5 expression correlates with up-regulation of cardiac contraction-related processes. To investigate how elevated cardiac Plin5 levels affect cardiac contractility, we generated mice with cardiac-specific overexpression of Plin5 (MHC-Plin5 mice). These mice displayed increased left ventricular mass and cardiomyocyte size but preserved heart function. Quantitative proteomics identified sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) as a Plin5-interacting protein. In situ proximity ligation assay further confirmed the Plin5/SERCA2 interaction. Live imaging showed increases in intracellular Ca2+ release during contraction, Ca2+ removal during relaxation, and SERCA2 function in MHC-Plin5 versus WT cardiomyocytes. These results identify a role of Plin5 in improving cardiac contractility through enhanced Ca2+ signaling.


Calcium Signaling , Heart Failure , Myocytes, Cardiac , Perilipin-5 , Animals , Humans , Mice , Calcium/metabolism , Cardiomegaly/genetics , Myocytes, Cardiac/metabolism , Perilipin-5/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
6.
J Intern Med ; 293(2): 228-245, 2023 02.
Article En | MEDLINE | ID: mdl-36324273

BACKGROUND: Patients with familial hypercholesterolemia (FH) display high levels of low-density lipoprotein cholesterol (LDL-c), endothelial dysfunction, and increased risk of premature atherosclerosis. We have previously shown that red blood cells (RBCs) from patients with type 2 diabetes induce endothelial dysfunction through increased arginase 1 and reactive oxygen species (ROS). OBJECTIVE: To test the hypothesis that RBCs from patients with FH (FH-RBCs) and elevated LDL-c induce endothelial dysfunction. METHODS AND RESULTS: FH-RBCs and LDL-c >5.0 mM induced endothelial dysfunction following 18-h incubation with isolated aortic rings from healthy rats compared to FH-RBCs and LDL-c <2.5 mM or RBCs from healthy subjects (H-RBCs). Inhibition of vascular but not RBC arginase attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. Furthermore, arginase 1 but not arginase 2 was elevated in the vasculature of aortic segments after incubation with FH-RBCs and LDL-c >5.0 mM. A superoxide scavenger, present throughout the 18-h incubation, attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. ROS production was elevated in these RBCs in comparison with H-RBCs. Scavenging of vascular ROS through various antioxidants also attenuated the degree of endothelial dysfunction induced by FH-RBCs and LDL-c >5.0 mM. This was corroborated by an increase in the lipid peroxidation product 4-hydroxynonenal. Lipidomic analysis of RBC lysates did not reveal any significant changes across the groups. CONCLUSION: FH-RBCs induce endothelial dysfunction dependent on LDL-c levels via arginase 1 and ROS-dependent mechanisms.


Diabetes Mellitus, Type 2 , Hyperlipoproteinemia Type II , Animals , Rats , Cholesterol, LDL , Reactive Oxygen Species/metabolism , Hyperlipoproteinemia Type II/complications , Erythrocytes/metabolism
7.
J Endocr Soc ; 6(11): bvac132, 2022 Oct 11.
Article En | MEDLINE | ID: mdl-36249410

Androgen deprivation therapy of prostate cancer, which suppresses serum testosterone to castrate levels, is associated with increased risk of heart failure. Here we tested the hypothesis that castration alters cardiac energy substrate uptake, which is tightly coupled to the regulation of cardiac structure and function. Short-term (3-4 weeks) surgical castration of male mice reduced the relative heart weight. While castration did not affect cardiac function in unstressed conditions, we observed reductions in heart rate, stroke volume, cardiac output, and cardiac index during pharmacological stress with dobutamine in castrated vs sham-operated mice. Experiments using radiolabeled lipoproteins and glucose showed that castration shifted energy substrate uptake in the heart from lipids toward glucose, while testosterone replacement had the opposite effect. There was increased expression of fetal genes in the heart of castrated mice, including a strong increase in messenger RNA and protein levels of ß-myosin heavy chain (MHC), the fetal isoform of MHC. In conclusion, castration of male mice induces metabolic remodeling and expression of the fetal gene program in the heart, in association with a reduced cardiac performance during pharmacological stress. These findings may be relevant for the selection of treatment strategies for heart failure in the setting of testosterone deficiency.

8.
Arterioscler Thromb Vasc Biol ; 42(8): 1037-1047, 2022 08.
Article En | MEDLINE | ID: mdl-35652335

BACKGROUND: The initiating step in atherogenesis is the electrostatic binding of LDL (low-density lipoprotein) to proteoglycan glycosaminoglycans in the arterial intima. However, although proteoglycans are widespread throughout the intima of most coronary artery segments, LDL is not evenly distributed, indicating that LDL retention is not merely dependent on the presence of proteoglycans. We aim to identify factors that promote the interaction between LDL and the vessel wall of human coronary arteries. METHODS: We developed an ex vivo model to investigate binding of labeled human LDL to human coronary artery sections without the interference of cellular processes. RESULTS: By staining consecutive sections of human coronary arteries, we found strong staining of sulfated glycosaminoglycans throughout the arterial intima, whereas endogenous LDL deposits were focally distributed. Ex vivo binding of LDL was uniform at all intimal areas with sulfated glycosaminoglycans. However, lowering the pH from 7.4 to 6.5 triggered a 35-fold increase in LDL binding. The pH-dependent binding was abolished by pretreating LDL with diethyl-pyrocarbonate, which blocks the protonation of histidine residues, or cyclohexanedione, which inhibits the positive charge of site B on LDL. Thus, both histidine protonation and site B are required for strong electrostatic LDL binding to the intima. CONCLUSIONS: This study identifies histidine protonation as an important component for electrostatic LDL binding to human coronary arteries. Our findings show that the local pH will have a profound impact on LDL's affinity for sulfated glycosaminoglycans, which may influence the retention and accumulation pattern of LDL in the arterial vasculature.


Coronary Vessels , Lipoproteins, LDL , Coronary Vessels/metabolism , Glycosaminoglycans/metabolism , Histidine , Humans , Hydrogen-Ion Concentration , Lipoproteins, LDL/metabolism , Proteoglycans/metabolism , Static Electricity
9.
J Endocrinol ; 251(1): 83-96, 2021 09 03.
Article En | MEDLINE | ID: mdl-34370693

Brown adipose tissue (BAT) burns substantial amounts of mainly lipids to produce heat. Some studies indicate that BAT activity and core body temperature are lower in males than females. Here we investigated the role of testosterone and its receptor (the androgen receptor; AR) in metabolic BAT activity in male mice. Castration, which renders mice testosterone deficient, slightly promoted the expression of thermogenic markers in BAT, decreased BAT lipid content, and increased basal lipolysis in isolated brown adipocytes. Further, castration increased the core body temperature. Triglyceride-derived fatty acid uptake, a proxy for metabolic BAT activity in vivo, was strongly increased in BAT from castrated mice (4.5-fold increase vs sham-castrated mice) and testosterone replacement reversed the castration-induced increase in metabolic BAT activity. BAT-specific AR deficiency did not mimic the castration effects in vivo and AR agonist treatment did not diminish the activity of cultured brown adipocytes in vitro, suggesting that androgens do not modulate BAT activity via a direct, AR-mediated pathway. In conclusion, testosterone is a negative regulator of metabolic BAT activity in male mice. Our findings provide new insight into the metabolic actions of testosterone.


Adipose Tissue, Brown/metabolism , Receptors, Androgen/deficiency , Testosterone/deficiency , Animals , Male , Mice , Mice, Inbred C57BL , Norepinephrine/metabolism , Orchiectomy
10.
Am J Pathol ; 191(11): 2023-2038, 2021 11.
Article En | MEDLINE | ID: mdl-34400131

Angiogenesis supplies oxygen and nutrients to growing tumors. Inhibiting angiogenesis may stop tumor growth, but vascular endothelial growth factor inhibitors have limited effect in most tumors. This limited effect may be explained by an additional, less vascular endothelial growth factor-driven form of angiogenesis known as intussusceptive angiogenesis. The importance of intussusceptive angiogenesis in human tumors is not known. Epifluorescence and confocal microscopy was used to visualize intravascular pillars, the hallmark structure of intussusceptive angiogenesis, in tumors. Human malignant melanoma metastases, patient-derived melanoma xenografts in mice (PDX), and genetically engineered v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-induced, phosphatase and TENsin homolog deleted on chromosome 10 (PTEN)-deficient (BPT) mice (BrafCA/+Ptenf/fTyr-Cre+/0-mice) were analyzed for pillars. Gene expression in human melanoma metastases and PDXs was analyzed by RNA sequencing. Matrix metalloproteinase 9 (MMP9) protein expression and T-cell and macrophage infiltration in tumor sections were determined with multiplex immunostaining. Intravascular pillars were detected in human metastases but rarely in PDXs and not in BPT mice. The expression of MMP9 mRNA was higher in human metastases compared with PDXs. High expression of MMP9 protein as well as infiltration of macrophages and T-cells were detected in proximity to intravascular pillars. MMP inhibition blocked formation of pillars, but not tubes or tip cells, in vitro. In conclusion, intussusceptive angiogenesis may contribute to the growth of human melanoma metastases. MMP inhibition blocked pillar formation in vitro and should be further investigated as a potential anti-angiogenic drug target in metastatic melanoma.


Melanoma/pathology , Neovascularization, Pathologic/pathology , Skin Neoplasms/pathology , Aged , Aged, 80 and over , Animals , Female , Heterografts , Humans , Male , Matrix Metalloproteinase 9/metabolism , Melanoma/metabolism , Mice , Middle Aged , Neovascularization, Pathologic/metabolism , Skin Neoplasms/metabolism , Melanoma, Cutaneous Malignant
11.
ESC Heart Fail ; 8(5): 4130-4138, 2021 10.
Article En | MEDLINE | ID: mdl-34463049

AIMS: Takotsubo syndrome (TTS) is an acute potentially reversible cardiac syndrome characterized by variable regional myocardial akinesia that cannot be attributed to a culprit coronary artery occlusion. TTS is an important differential diagnosis of acute heart failure where brain natriuretic peptides are elevated. Sacubitril/valsartan is a novel and effective pharmacological agent for the treatment of patients with heart failure. Our aim was to explore whether treatment with sacubitril/valsartan could prevent isoprenaline-induced takotsubo-like phenotype in rats. METHODS AND RESULTS: A total number of 186 Sprague-Dawley male rats were randomized to receive pretreatment with water (CONTROL, n = 62), valsartan (VAL, n = 62), or sacubitril/valsartan (SAC/VAL, n = 62) before receiving isoprenaline for induction of TTS. We recorded heart rate and blood pressure invasively. Cardiac morphology and function were evaluated by high-resolution echocardiography 90 min after the administration of isoprenaline. We documented the survival rate at the time of echocardiography. Compared with the CONTROL group, the SAC/VAL group had less pronounced TTS-like cardiac dysfunction and lower mortality rate, while the VAL group did not differ. Heart rate and blood pressure were not significantly different between the groups. Analysis of cardiac lipids was performed with mass spectrometry. The VAL and SAC/VAL groups had significantly higher levels of lysophosphatidylcholine (LPC), in particular LPC 18:1 and LPC 16:0. CONCLUSIONS: Pretreatment with sacubitril/valsartan but not with valsartan reduces mortality and attenuates isoprenaline-induced apical akinesia in the TTS-like model in rats. Sacubitril/valsartan could be a potential treatment option in patients with TTS in humans.


Aminobutyrates , Animals , Biphenyl Compounds , Drug Combinations , Humans , Isoproterenol/adverse effects , Male , Rats , Rats, Sprague-Dawley , Valsartan
12.
J Immunother Cancer ; 9(7)2021 07.
Article En | MEDLINE | ID: mdl-34215689

We report a case of rapid eradication of melanoma brain metastases and simultaneous near-fatal encephalomyelitis following double immune checkpoint blockade. Brain damage marker S-100B and C reactive protein increased before symptoms or signs of encephalomyelitis and peaked when the patient fell into a coma. At that point, additional brain damage markers and peripheral T cell phenotype was analyzed. The analyses were repeated four times during the patient's recovery. Axonal damage marker neurofilament light polypeptide (NFL) and astrocytic damage marker glial fibrillar acidic protein (GFAP) were very high in blood and cerebrospinal fluid and gradually normalized after immunosuppression and intensive care. The costimulatory receptor inducible T cell costimulatory receptor (ICOS) was expressed on a high proportion of CD4+ and CD8+T cells as encephalomyelitis symptoms peaked and then gradually decreased in parallel with clinical improvement. Both single and double immune checkpoint inhibitor-treated melanoma patients with other serious immune-related adverse events (irAE) (n=9) also expressed ICOS on a significantly higher proportion of CD4+ and CD8+T cells compared with controls without irAE (n=12). In conclusion, our results suggest a potential role for ICOS on CD4+ and CD8+T cells in mediating encephalomyelitis and other serious irAE. In addition, brain damage markers in blood could facilitate early diagnosis of encephalitis.


Biomarkers/metabolism , Brain Damage, Chronic/chemically induced , Brain Damage, Chronic/genetics , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Encephalomyelitis/chemically induced , Immune Checkpoint Inhibitors/therapeutic use , Inducible T-Cell Co-Stimulator Protein/metabolism , Aged , Brain Damage, Chronic/pathology , Humans , Immune Checkpoint Inhibitors/pharmacology , Male
13.
Eur Heart J ; 42(43): 4481-4492, 2021 11 14.
Article En | MEDLINE | ID: mdl-34297830

AIMS: Cardiac injury and remodelling are associated with the rearrangement of cardiac lipids. Glycosphingolipids are membrane lipids that are important for cellular structure and function, and cardiac dysfunction is a characteristic of rare monogenic diseases with defects in glycosphingolipid synthesis and turnover. However, it is not known how cardiac glycosphingolipids regulate cellular processes in the heart. The aim of this study is to determine the role of cardiac glycosphingolipids in heart function. METHODS AND RESULTS: Using human myocardial biopsies, we showed that the glycosphingolipids glucosylceramide and lactosylceramide are present at very low levels in non-ischaemic human heart with normal function and are elevated during remodelling. Similar results were observed in mouse models of cardiac remodelling. We also generated mice with cardiomyocyte-specific deficiency in Ugcg, the gene encoding glucosylceramide synthase (hUgcg-/- mice). In 9- to 10-week-old hUgcg-/- mice, contractile capacity in response to dobutamine stress was reduced. Older hUgcg-/- mice developed severe heart failure and left ventricular dilatation even under baseline conditions and died prematurely. Using RNA-seq and cell culture models, we showed defective endolysosomal retrograde trafficking and autophagy in Ugcg-deficient cardiomyocytes. We also showed that responsiveness to ß-adrenergic stimulation was reduced in cardiomyocytes from hUgcg-/- mice and that Ugcg knockdown suppressed the internalization and trafficking of ß1-adrenergic receptors. CONCLUSIONS: Our findings suggest that cardiac glycosphingolipids are required to maintain ß-adrenergic signalling and contractile capacity in cardiomyocytes and to preserve normal heart function.


Glucosyltransferases , Myocytes, Cardiac , Animals , Cardiomegaly , Glucosyltransferases/genetics , Mice , Receptors, Adrenergic
14.
Elife ; 102021 05 11.
Article En | MEDLINE | ID: mdl-33972017

Myocardial infarction (MI) promotes a range of systemic effects, many of which are unknown. Here, we investigated the alterations associated with MI progression in heart and other metabolically active tissues (liver, skeletal muscle, and adipose) in a mouse model of MI (induced by ligating the left ascending coronary artery) and sham-operated mice. We performed a genome-wide transcriptomic analysis on tissue samples obtained 6- and 24 hr post MI or sham operation. By generating tissue-specific biological networks, we observed: (1) dysregulation in multiple biological processes (including immune system, mitochondrial dysfunction, fatty-acid beta-oxidation, and RNA and protein processing) across multiple tissues post MI and (2) tissue-specific dysregulation in biological processes in liver and heart post MI. Finally, we validated our findings in two independent MI cohorts. Overall, our integrative analysis highlighted both common and specific biological responses to MI across a range of metabolically active tissues.


The human body is like a state-of-the-art car, where each part must work together with all the others. When a car breaks down, most of the time the problem is not isolated to only one part, as it is an interconnected system. Diseases in the human body can also have systemic effects, so it is important to study their implications throughout the body. Most studies of heart attacks focus on the direct impact on the heart and the cardiovascular system. Learning more about how heart attacks affect rest of the body may help scientists identify heart attacks early or create improved treatments. Arif and Klevstig et al. show that heart attacks affect the metabolism throughout the body. In the experiments, mice underwent a procedure that mimics either a heart attack or a fake procedure. Then, Arif and Klevstig et al. compared the activity of genes in the heart, muscle, liver and fat tissue of the two groups of mice 6- and 24-hours after the operations. This revealed disruptions in the immune system, metabolism and the production of proteins. The experiments also showed that changes in the activity of four important genes are key to these changes. This suggests that this pattern of changes could be used as a way to identify heart attacks. The experiments show that heart attacks have important effects throughout the body, especially on metabolism. These discoveries may help scientists learn more about the underlying biological processes and develop new treatments that prevent the harmful systemic effects of heart attacks and boost recovery.


Gene Expression Profiling , Heart/physiopathology , Myocardial Infarction/genetics , Transcriptome , Animals , Disease Models, Animal , Genome , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Myocardial Infarction/physiopathology , Oxidation-Reduction
15.
J Am Soc Mass Spectrom ; 31(10): 2133-2142, 2020 Oct 07.
Article En | MEDLINE | ID: mdl-32897704

Acute myocardial infarction (MI) is a cardiovascular disease that remains a major cause of morbidity and mortality worldwide despite advances in its prevention and treatment. During acute myocardial ischemia, the lack of oxygen switches the cell metabolism to anaerobic respiration, with lactate accumulation, ATP depletion, Na+ and Ca2+ overload, and inhibition of myocardial contractile function, which drastically modifies the lipid, protein, and small metabolite profile in the myocardium. Imaging mass spectrometry (IMS) is a powerful technique to comprehensively elucidate the spatial distribution patterns of lipids, peptides, and proteins in biological tissue sections. In this work, we demonstrate an application of multimodal chemical imaging using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), which provided comprehensive molecular information in situ within the same mouse heart tissue sections with myocardial infarction. MALDI-IMS (at 30 µm per pixel) revealed infarct-associated spatial alterations of several lipid species of sphingolipids, glycerophospholipids, lysophospholipids, and cardiolipins along with the acyl carnitines. Further, we performed multimodal MALDI-IMS (IMS3) where dual polarity lipid imaging was combined with subsequent protein MALDI-IMS analysis (at 30 µm per pixel) within the same tissue sections, which revealed accumulations of core histone proteins H4, H2A, and H2B along with post-translational modification products, acetylated H4 and H2A, on the borders of the infarcted region. This methodology allowed us to interpret the lipid and protein molecular pathology of the very same infarcted region in a mouse model of myocardial infarction. Therefore, the presented data highlight the potential of multimodal MALDI imaging mass spectrometry of the same tissue sections as a powerful approach for simultaneous investigation of spatial infarct-associated lipid and protein changes of myocardial infarction.


Lipids/analysis , Myocardial Infarction/pathology , Myocardium/pathology , Proteins/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Disease Models, Animal , Mice , Myocardium/chemistry
16.
Int J Cardiol ; 320: 106-111, 2020 Dec 01.
Article En | MEDLINE | ID: mdl-32738258

BACKGROUND: Type 2 diabetes is a major health problem in the world, and is strongly associated with impaired cardiac function and increased mortality. The causal relationship between type 2 diabetes and impaired cardiac function is still incompletely understood but changes in the cardiac lipid metabolism are believed to be a contributing factor. The objective of this study was to determine the lipid profile in human myocardial biopsies collected in vivo from patients with type 2 diabetes and compare to non-diabetic controls. METHOD: We conducted full lipidomics analyses, using mass spectrometry, of 85 right atrial biopsies obtained from diabetic and non-diabetic patients undergoing elective cardiac surgery. The patients were characterized clinically and serum was analyzed for lipids and biochemical markers. RESULTS: The groups did not differ in BMI and in circulating triglycerides. We demonstrate that type 2 diabetes is associated with alterations in the cardiac lipidome. Interestingly, the absolute amount of lipids is not altered in the diabetic myocardium. However, triglycerides with longer fatty acyl chains are more abundant and there is a higher degree of unsaturated fatty acid chains in triglycerides in diabetic myocardium. CONCLUSIONS: Our study reveals that type 2 diabetes is a relatively strong determinant of the human cardiac lipidome (compared to other clinical variables). Although the total lipid content in the diabetic myocardium is not increased, the lipid composition is markedly affected.


Diabetes Mellitus, Type 2 , Diabetes Mellitus, Type 2/metabolism , Heart , Humans , Lipid Metabolism , Myocardium/metabolism , Triglycerides/metabolism
17.
Front Physiol ; 11: 763, 2020.
Article En | MEDLINE | ID: mdl-32733273

AIM: The acute phase of myocardial infarction (MI) is accompanied by edema contributing to tissue damage and disease outcome. Here, we aimed to identify the mechanism whereby vascular endothelial growth factor (VEGF)-A induces myocardial edema in the acute phase of MI to eventually promote development of therapeutics to specifically suppress VEGFA-regulated vascular permeability while preserving collateral vessel formation. METHODS AND RESULTS: VEGFA regulates vascular permeability and edema by activation of VEGF receptor-2 (VEGFR2), leading to induction of several signaling pathways including the cytoplasmic tyrosine kinase c-Src. The activated c-Src in turn phosphorylates vascular endothelial (VE)-cadherin, leading to dissociation of endothelial adherens junctions. A particular tyrosine at position 949 in mouse VEGFR2 has been shown to be required for activation of c-Src. Wild-type mice and mice with phenylalanine replacing tyrosine (Y) 949 in VEGFR2 (Vegfr2 Y949F/Y949F ) were challenged with MI through permanent ligation of the left anterior descending coronary artery. The infarct size was similar in wild-type and mutant mice, but left ventricular wall edema and fibrinogen deposition, indicative of vascular leakage, were reduced in the Vegfr2 Y949F/Y949F strain. When challenged with large infarcts, the Vegfr2 Y949F/Y949F mice survived significantly better than the wild-type strain. Moreover, neutrophil infiltration and levels of myeloperoxidase were low in the infarcted Vegfr2 Y949F/Y949F hearts, correlating with improved survival. In vivo tyrosine phosphorylation of VE-cadherin at Y685, implicated in regulation of vascular permeability, was induced by circulating VEGFA in the wild-type but remained at baseline levels in the Vegfr2 Y949F/Y949F hearts. CONCLUSION: Suppression of VEGFA/VEGFR2-regulated vascular permeability leads to diminished edema without affecting vascular density correlating with improved myocardial parameters and survival after MI.

18.
J Mol Cell Cardiol ; 137: 1-8, 2019 12.
Article En | MEDLINE | ID: mdl-31533023

AIMS: The microsomal triglyceride transport protein (MTTP) is critical for assembly and secretion of apolipoprotein B (apoB)-containing lipoproteins and is most abundant in the liver and intestine. Surprisingly, MTTP is also expressed in the heart. Here we tested the functional relevance of cardiac MTTP expression. MATERIALS AND METHODS: We combined clinical studies, advanced expression analysis of human heart biopsies and analyses in genetically modified mice lacking cardiac expression of the MTTP-A isoform of MTTP. RESULTS: Our results indicate that lower cardiac MTTP expression in humans is associated with structural and perfusion abnormalities in patients with ischemic heart disease. MTTP-A deficiency in mice heart does not affect total MTTP expression, activity or lipid concentration in the heart. Despite this, MTTP-A deficient mice displayed impaired cardiac function after a myocardial infarction. Expression analysis of MTTP indicates that MTTP expression is linked to cardiac function and responses in the heart. CONCLUSIONS: Our results indicate that MTTP may play an important role for the heart function in conjunction to ischemic events.


Cardiotonic Agents/metabolism , Carrier Proteins/metabolism , Heart/physiopathology , Myocardial Ischemia/physiopathology , Animals , Carrier Proteins/genetics , Female , Gene Expression Regulation , Humans , Lipid Metabolism , Liver/metabolism , Male , Mice, Knockout , Middle Aged , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/genetics , Myocardial Infarction/physiopathology , Myocardial Ischemia/genetics , Polymorphism, Single Nucleotide/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
19.
Sci Rep ; 9(1): 6909, 2019 05 06.
Article En | MEDLINE | ID: mdl-31061399

Myocardial dysfunction is commonly associated with accumulation of cardiac lipid droplets (LDs). Perilipin 2 (Plin2) is a LD protein that is involved in LD formation, stability and trafficking events within the cell. Even though Plin2 is highly expressed in the heart, little is known about its role in myocardial lipid storage. A recent report shows that cardiac overexpression of Plin2 result in massive myocardial steatosis suggesting that Plin2 stabilizes LDs. In this study, we hypothesized that deficiency in Plin2 would result in reduced myocardial lipid storage. In contrast to our hypothesis, we found increased accumulation of triglycerides in hearts, and specifically in cardiomyocytes, from Plin2-/- mice. Although Plin2-/- mice had markedly enhanced lipid levels in the heart, they had normal heart function under baseline conditions and under mild stress. However, after an induced myocardial infarction, stroke volume and cardiac output were reduced in Plin2-/- mice compared with Plin2+/+ mice. We further demonstrated that the increased triglyceride accumulation in Plin2-deficient hearts was caused by altered lipophagy. Together, our data show that Plin2 is important for proper hydrolysis of LDs.


Autophagy , Lipid Metabolism , Myocardium/cytology , Myocardium/metabolism , Perilipin-2/deficiency , Animals , Cell Respiration , Heart/physiology , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Triglycerides/metabolism
20.
Thromb Haemost ; 119(2): 223-233, 2019 Feb.
Article En | MEDLINE | ID: mdl-30602198

Endothelial expression of tissue-type plasminogen activator (t-PA) is crucial for maintaining an adequate endogenous fibrinolysis. It is unknown how endothelial t-PA expression and fibrinolysis are affected by blood flow in vivo. In this study, we investigated the impact of different blood flow profiles on endothelial t-PA expression and fibrinolysis in the arterial vasculature. Induction of disturbed laminar blood flow (D-flow) in the mouse carotid artery potently reduced endothelial t-PA messenger ribonucleic acid and protein expression, and caused fibrin deposition. En face immunohistochemistry demonstrated that arterial areas naturally exposed to D-flow had markedly lower endothelial t-PA levels than areas with sustained laminar blood flow (S-flow), and displayed pronounced fibrin deposition despite an intact endothelium. In t-PA and plasminogen-deficient mice, fibrin deposition did not extend into S-flow areas, indicating that areas of D-flow and S-flow differ, not only in fibrinolytic capacity, but also in coagulation. Furthermore, plasminogen accumulation was found at D-flow areas, and infusion of recombinant t-PA activated fibrinolysis and significantly reduced the fibrin deposits. In conclusion, D-flow potently impairs the fibrinolytic capacity and causes endothelial fibrin deposition in vivo. Our data also indicate that t-PA is the limiting factor for efficient fibrinolysis at the thrombosis-prone D-flow areas in the arterial vasculature.


Blood Coagulation/drug effects , Blood Flow Velocity , Fibrin/metabolism , Fibrinolysis/drug effects , Animals , Carotid Arteries/pathology , Endothelium/metabolism , Female , Fibrin Clot Lysis Time , Humans , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism , Recombinant Proteins/administration & dosage , Shear Strength , Thrombolytic Therapy , Thrombosis , Tissue Plasminogen Activator/administration & dosage , Wound Healing
...